/// BANGBOO BLOG ///

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

March 29, 2024

Audio I/F



- Input2用Hi-z(ハイインピーダンス):接続相手が何であっても問題にならないほど充分にインピーダンスが高い、という意味。インピーダンスは電気抵抗であり、例えば2.2kΩ~1MΩ等で、受け手の抵抗が小さいと問題になるので、受け側を高く「ロー出しハイ受け」にしておく。エレクトリックギターやエレクトリックベースの出力は通常のマイクよりもかなりインピーダンスが高いため普通のマイク入力端子等に接続しても正常な音が出ない。LineレベルならOFF/楽器レベルならONということで、これら楽器の場合ONにしておく
- ST:Input1/2でステレオか?、Input1/2を合成してモノか?
- Loopback:PCの音をInput1/2に混ぜてUSBに返すか?(Loopbackの音をモニターするにはダイレクトモニターONにする必要がある)
- Direct monitor:Input1/2をPCに通すか?PCを通さないダイレクトモニターだと音の遅延がなくなる

オーディオインターフェイスは要らんのだが、、

==========

ダイナミックマイクの方が音が好みだが、マイクに口を近づける必要がありオンラインMTG用だと使いにくい、常用はコンデンサーマイクになろう(ダイナミックマイクのケース中にポップガードあり取り除いたが、それでも声小さい)マイク2本持ちながら在庫存在忘れるなぁ

■コード
コード進行の基本:コードの役割から自由に進行を作る! (watanabejunya.com)
コード進行まとめ(100種類以上) O-TO【音楽理論ウェブアプリ】 (khufrudamonotes.com)
和音検索 – 和音をピアノ、ギター、ウクレレを使って表す | Musicca
 音楽ツール | Musicca
ちゃうな
KANTAN Play – Play chords with just one finger! (kantan-play.com)
楽器を弾けない人でも楽器演奏を存分に楽しめるKANTAN Playが無料で公開。10万曲以上の専用楽譜も無料で入手可能 (dtmstation.com)

Posted by funa : 10:32 PM | Gadget | Comment (0) | Trackback (0)


March 9, 2024

漬物石mpc > モンキーロックジェイルブレイク
mpc live ii retro
時間無いし漬物石になるだけだがもう売ってないのが余計に欲しい、mpc1000は黒だったが(15年位前!!)、やっぱり思い入れ(30年前!!)のmpc2000とか3000とかの色の方がインテリアにいいなぁ、くそッ(ミニマムで必要十分でコレで良いんだよ、ツマミとか少ない方が覚える事がすくなくてな、PCベースでもいいと読んでたのが裏目だな->One(+)の方が質感が好みだが赤かakaiだけに!?)
/// BANGBOO BLOG /// - Net Corruption

Beatsはフリーやん
製品情報:MPC Beats:AKAI professional (akai-pro.jp)
- 三>preference
 samplerのInやMidi I/Oが設定できる
- trackの編集
 トラックmodeでどのトラックを編集するか決めてHomeで曲データ編集
 トラックにタイプがありドラム/キーボード/プラグイン/Midi/Clip/CVがあり選択できる
 ドラムにはパッド打撃やサンプルがアサインされている
 プラグインは音階のヤツがアサインされている(キーボードやMidiも鍵盤がでる)
- 音変更
 トラックにプログラム(音セット)がアサインされていてプログラム変更で一括変更する
 パッドに音をドラッグで個別変更
- chopの利用
 Q-links>Chop>Chop to>Manual/Thredshold/Regions/BPMで
 マニュアルだと:
 ExtractNewSamplesでNewProgramで新プログラムが良さそう
 パッドを順におしてアサイン
 マウスで位置調整やダブルクリックで分割数を増減し調整
 単音だと:
 Padで音を選ぶ>Extract(場所調整や長さを変えるにはコレ)
- Midiキーボード
 手持ちのキーボードがusb midiでPCに接続するだけ
- Audio I/O不要
 Samples窓にファイルをドラッグすればwav/mp3等を使える
- Sampleのピッチ/スピードの変え方は?
 1)Sampleエディット画面でPitchShiftやTimeStretch
 2)16levelなら:
 Padで音を選ぶ>16level,Type=tune,original padで基本の高さを選ぶ>16Padにアサイン
- テンポを合わす
 Sampleを流してTapを叩くとグローバルテンポがSampleに合うもので設定できる

サウンドコントロールパネル>録音>オーディオI/Fのプロパティ>聴く>このデバイスを聴く にするとオーディオI/Fで入れた音をPCのOSだけで聞ける


●旧ユーザでin Musicアカウントから登録解除されていないとverupダウンロード等が出来なくなる可能性がある(今は登録解除がなく最新シリアル登録のアカウントが有効な感じ?)、新規登録:1)in Musicでin MusicアカウントにMPC本体のシリアルを登録する
●新PCでMPCソフトウェアを使うにはiLokライセンスも別で譲渡手続きをする必要があり、iLokのアカウントネームを旧ユーザに知らせてiLokライセンスマネージャをインストールしdeactivateで譲渡手続きする(その際に25ドルの手数料が発生)、新規登録:1)MPCソフトウェアをin MusicからダウンロードしてPCにインストール(幾つかあるがどれ要る?)、2)iLokにアカウントを作成、3)MPCソフトウェアをPCで起動するとアクティベーションコードを求められるのでin Musicから拾い入力
●SPLICEアカウントにもMPCに表示されるコードを登録する、1)MPCのPreferences>Splice>LogginでQRを出して進めたような、2)Spliceにもアカウントを作ったような
●StemsをAkai登録に紐づいたEメールアカウントで購入しPluginをアクティベートする、1)Akaiのサイトで購入、2)PCと漬物石でPreferences>Active pluginsでin Musicにログインしインストール
MPCソフトウェアのライセンス認証登録方法【MPC ONE】 | TONYs log
AKAI Professional :: MPC LIVE・サポート情報 (akai-pro.jp)
MPC_Setup_Guide.pdf (akai-pro.jp)
Akai Professional | Stems Separation - インストールとアクティベーションの方法 : inMusic Support (freshdesk.com)

/// BANGBOO BLOG /// - REMIX DTM DAW - Acid
Acidとボーカル/ドラム/ベース音を分別抽出のspleeterをやってたがAkaiしか勝たん>MPC stemsでボーカル/ドラム/ベース/ミュージックの分別ができるようになる2024/03から!!>キターー!$9.99

Posted by funa : 02:48 PM | Gadget | Comment (0) | Trackback (0)


February 20, 2024

駐輪禁止
おぢへ(頂き女子から"愛を込めて"、ギバー/マッチャーへ)
【プレビュー】1ヶ月1000万頂く頂き女子りりちゃんの【みんなを稼がせるマニュアル】



Prohibition of parking bike in Kobe

■リンは腎臓に悪い
1)茹でて湯は捨てる
2)大豆などの植物性食品からたんぱく質を摂取する
(大豆の有機リンはフィチン酸で人間の腸からは吸収されない、肉や魚はリンが多い)

Posted by funa : 10:03 PM | Bike | Comment (0) | Trackback (0)


January 14, 2024

GKE
モダンか何か知らんが、豚玉かイカ玉で十分じゃ

===========
kubectlチートシート | Kubernetes

フォルダに .py と requirements.txt と .dockerignore と Dockerfile を入れてアップロードしている
gcloud builds submit --tag asia-northeast2-docker.pkg.dev/bangboo-prj/xxx/image001

helloworld@bangboo-prj.iam.gserviceaccount.com 作成
アクセス元のIPを確認するCloud run作成
 ドメインないと無理なのでLBとIAPをあきらめ生成されるURLで十分
 Cloud runでアクセス元IPを表示するヤツ
 runのallUsersのinvokerを削除したらアクセス不可になった(この方法で管理する)
curl http://ifconfig.me/ で十分だったが

GKE
k8sの内部NWは通常別途いるがGKEは速い奴が動作
GKEはクラスタ内部のDNSでサービス名で名前解決できる
サービスのIPとポートは環境変数で参照可
kubectlを使うには、gcloud container cluters get-credentials を打つ必要がある

GKE設定
-クラスタ:側の設定(IP範囲とかセキュリティとか?)
 一般/限定公開:外部IPを使うか使わないか
 コントロール プレーン承認済みネットワーク:CPにアクセスできるセキュリティ範囲
-ワークロード:マニフェストで設定

一般か限定公開か?コントロールプレーンが外部IPか?CPがグローバルアクセス可か?承認NWか?
 一般公開で承認NWが良いのでは?簡単だし、
 限定公開で使うには>CPに外部IPで承認NWでいいのでは?
  NW:default subnet:default
  外部IPでアクセス許可
  CP アドレスの範囲 192.168.1.0/28とか172.16.0.0/28(サブネット重複しない奴)
  コントロール プレーン承認済みネットワーク home (169.99.99.0/24ではなくGCPのIPぽい)
  限定公開ならnatが要る
 CPの VPCのIP範囲は、クラスタの VPC 内のサブネットと重複不可。CPとクラスタは VPC ピアリングを使用してプライベートで通信します
 グローバルアクセスは別リージョンからという意味っぽい、cloud shellからのkubectlのためONが良い
デフォルト設定なら作成したサブネットのIP範囲でなくクラスタが作られない
 面倒ならdefault-defaultで良いかも

サブネットをVPCネットワークを考えて指定する方が偉いかも知れんが
default asia-northeast2 10.174.0.0/20 の場合
 サブネットは asia-northeast2 10.174.27.0/24 とか

ARにあるコンテナからGKEをデプロイが簡単にできる
Cloud Source Repositories でソース管理gitが下記のようにできる
 gcloud source repos clone bangboo-registry --project=bangboo-prj
 cd bangboo-registry
 git push -u origin master
run使用中のコンテナがGKE上では上手くいかない runのコンテナは8080のようだ
 Dockerfileとmain.py上ではポートは何でもよい仕様だが、runで自動的に8080割り当てるようだ
  それが駄目でありGKEは環境変数でPORT 8080を指定
  CrashLoopBackOff問題がでる
  https://www.scsk.jp/sp/sysdig/blog/container_security/content_7.html
デプロイ公開でポート80 ターゲットポート8080に(クラスタを作成後、ワークロードでデプロイする)

developmentのspec: containers: ports: - containerPort: 8080 を入れる?
 yamlでなく、コンソールで設定時に入れると良い

$ kubectl get all
NAME                      TYPE           CLUSTER-IP    EXTERNAL-IP    PORT(S)        AGE
service/flask-1-service   LoadBalancer   10.48.4.134   34.97.169.72   80:32147/TCP   20m

us-docker.pkg.dev/google-samples/containers/gke/hello-app:1.0
 これは簡単に上手く行く、環境変数PORT8080不要
 クイックスタート: アプリを GKE クラスタにデプロイする  |  Google Kubernetes Engine (GKE)  |  Google Cloud

ワークロードでyamlの spec: replicas: 0を保存するとアクセスを止められる

コンフィグマップ:構成ファイル、コマンドライン引数、環境変数、ポート番号を別途持っていてPodにバインドする(マニフェストに書くと抜き出され見れる)
シークレット:Base64の値?(マニフェストに書くと抜き出され見れる)甘いのでsecret mgrを使う方が良い?
 config map/secretはマニフェストで編集する必要がある(見れるだけと思われる)
エディタで見てみる:yamlとかステータスが見れる

■LBに静的IPを振る
hello-app-addressと名付けたIPを取得
LBのアノテーションで設定
# ingress.yaml(NWはNodePort、Route
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: hello-ingress
  namespace: default
  annotations:
    kubernetes.io/ingress.global-static-ip-name: hello-app-address  # IP
    networking.gke.io/managed-certificates: hello-managed-cert      # 証明書
    kubernetes.io/ingress.class: "gce"  # 外部 HTTP(S)LB
spec:
  defaultBackend:
    service:
      name: hello-deployment
      port:
        number: 8080

ServiceのLBはリージョン指定するタイプの静的IP
IngressはグローバルIPOK
apiVersion: v1
kind: Service
metadata:
  name: hoge
  labels:
    app: hoge
spec:
  ports:
    - port: 80
  selector:
    app: hoge
    tier: frontend
    environment : stage
  type: LoadBalancer
  loadBalancerIP: xxx.xxx.xxx.xxx


ArmorでIP制限
1)サービスから対象を選択しingressを作成することでLBを追加しArmorも設定可能
2)デフォルトLBに付けるにはkubectl要りそう、backendconfig.yamlはどこに置く
 Cloud ArmorでGKE IngressへのアクセスをIPで制御する #GoogleCloud - Qiita
サービス画面のkubectrlから
# backend-config.yaml を作り kubectl apply -f backend-config.yaml
apiVersion: cloud.google.com/v1
kind: BackendConfig
metadata:
  namespace: default
  name: hello-backend-config
spec:
  securityPolicy:
    name: "bangboo-armor"

serviceのyamlに下記を追加
metadata:
  annotations:
    cloud.google.com/backend-config: '{"ports": {"8080":"hello-backend-config"}}'
↑これでは不足する 
どこで設定状態を見るか?
ingress作成してLBとArmorつけて、デフォルトLBを削除してみる?

GKEの外部からのアクセスを制限するには?
 限定公開+コントロールプレーンは承認済み等でアクセスしKubectlする
 ArmorでIP制限+アダプティブ設定(ArmorはLBが要る)
GKEでNodePort TypeのServiceに対してインターネットアクセス許可する - IK.AM

限定公開クラスタ+踏み台サーバにIAPで入りKubectl(承認済みNWでの制御はIPのみなので危ういらしい)
GKE(Google Kubernetes Engine) Autopilotの限定公開クラスタにIAPを利用してアクセスする | Tech-Tech (nddhq.co.jp)
【GKE/Terraform】外部ネットワークからの全てのアクセスを制限した限定公開クラスタを作成し、踏み台サーバーからkubectlする (zenn.dev)
コントロールプレーンとPod間で自動FWされない場合もありFirewall要チェック

 Cloud shellのグローバルIPを取得しシェルを承認済みNWにできないか?>OK
 curl http://ifconfig.me/

GKEでPythonをCron定期実行させたい
ArgoでDAGを実行させたい
 https://zenn.dev/ring_belle/articles/2c4bbe4365b544
ArgoでGKEのCICD(Argoは別ホストでGithubにアクセスし、GKEを操る)
 https://www.asobou.co.jp/blog/web/argo-cd

サービスアカウント
Workload Identity Federation for GKEの新しい設定方法を解説 - G-gen Tech Blog
1)ノードに紐付いたサービスアカウントKSAをそのまま使用する(裏でimpersonate)
gkeのサービスアカウントとIAMサービスアカウントの紐づけが不要になった
VPCサービスコントロールで管理したい場合impersonateのSAを指定できないためWIFが要る
2)サービスアカウントのキーを Kubernetes Secret として GKE クラスタに登録する
3)Workload Identity Federationをつかう
GCP の Workload Identity サービスについてのまとめ #GoogleCloud - Qiita
Githubとか外部のサービスから利用するためSAを連携させる
IAM>Workload identity連携画面で設定が見れる
※KSAはノード単位で設定、Pod単位でGCPのリソースにアクセスできるように管理したい?

●メモ
忙しいときはスケールアウトするが、落ち着き始めるとスケールinし、必要なPodも落とされてしまう
safe-to-evict をymlのannotationで明示して特定Podはスケールinしない等にしておく
annotations:
  cluster-autoscaler.kubernetes.io/safe-to-evict:"false"
クラスタのオートスケーラー イベントの表示  |  Google Kubernetes Engine (GKE)  |  Google Cloud

■Workloads リソース
Pod:Workloadsリソースの最小単位
ReplicaSet:Podのレプリカを作成し、指定した数のPodを維持し続けるリソースです。
Deployment:ローリングアップデートやロールバックなどを実現するリソースです。
DaemonSet(ReplicaSet亜種):各ノードにPodを一つずつ配置するリソースです。
StatefulSet(ReplicaSet亜種):ステートフルなPodを作成できるリソースです。
Job:Podを利用して、指定回数のみ処理を実行させるリソースです。(使い捨てPod)
CronJob:Jobを管理するリソースです。
Config connector:GKEでGCPリソースを調節してくれるアドオン。Podの増加減少にあたり必要なアカウントや権限やPubSub等々を自動作成や管理する。マニフェストのymlにcnrmのAPIを記載したりする(Config connector resource nameの略)

■GKE関連の運用
GKEクラスタ認証ローテーション
30日以内になると自動ローテーションするが危険なので手動が由
GKEはマイクロサービスのエンドポイントでのサービス提供かgcloud api利用が前提といえるのでこれでOK
1) ローテ開始 (CPのIPとクレデンシャル)
2) ノード再作成
3) APIクライアントを更新 (クレデンシャル再取得)
4) ローテ完了 (元IPと旧クレデンシャルの停止)
GKEクラスタ認証ローテーションの考慮
セキュアなGKEクラスタ
コントロールプレーンの自動アップグレード&IPローテーション&ノードブールの自動アップグレードで死ぬ
 CPの更新後はクレデンを取得しなおす必要がある、ArgoでCICDを組んでいるとクラスタに認証入りなおす必要がある
 ノードが入れ替わりに時間が掛かり、時間差で問題がでることがあるので注意

Posted by funa : 09:59 PM | Web | Comment (0) | Trackback (0)


December 8, 2023

竹書房 stardust
裁判で「ツッコんでもうた、ボケやのにっ」てボケる
そしてデブキャラで復活、笑われるキャラっていうのが俺の見立て

==========
■米海軍で屈指の潜水艦艦長による最強組織の作り方
リーダシップ:価値と潜在能力を伝え刺激する(協力を支配で操る)
担当者の方がが細かいところまで詳しく知っている
 権限を与えるとは支配と同じ
 目標と裁量は両立するか
 リーダの技量が組織の業績か、メンバーの技量ではないのか
疑問:活かすには命令でなく創意工夫で実務を行った方が良いのではないか
結果:残留率up、組織状態better
要るもの:権限だけでなく自由を与える
やる事:mtgでなく確認会(聞く方の準備や参加が必要)、命令でなく確認し許可取り

●やったこと
委ねるリーダーシップ
権限を与える
命令を避ける
命令するときは、乗員が異を唱える余地を残す
やるべきことを確認する
会話をする
上官と部下が学びあう機会を設ける
人を重視する
長い目で考える
いなくなっても困らない存在を目指す
訓練の回数より質を重視する
正式な命令以外でも、会話を通じて情報交換する
つねに好奇心を持つ
意味のない手順や工程をすべて排除する
監視や検査を減らす
情報を公開する

●やらなかったこと
命じるリーダーシップ
権限を握る
命令する
命令するときは、 自信を持って絶対だと明言する
やるべきことを説明する
会議をする
上官が部下を指導する機会を設ける
技術を重視する
目の前のことを考える
いなくなったら困る存在を目指す
訓練の質より回数を重視する
明瞭簡潔な言葉のみを使用し、 正式な命令以外の言葉を交わさない
つねに疑いを持つ
手順や工程の効率を改善する
監視や検査を増やす
情報を公開しない

-支配からの解放
┣支配構造の遺伝子コードを見つけ出して書き換える
┣態度を変えることで新しい考え方をもたらす
┣早めに短く言葉を交わし、仕事の効率を高める
┣ 「これから~をします」という言い方を導入し、命令に従う だけだったフォロワーを自発的に行動するリーダーに変える
┣解決策を与えたい衝動を抑える
┣部下を監視するシステムを排除する
┗思っていることを口に出す

-優れた技能
┣直前に確認する
┣いつどこでも学ぶ者でいる
┣説明するな、確認せよ
┣同じメッセージを絶えず繰り返し発信する
┗手段ではなく目標を伝える

-正しい理解
┣ミスをしないだけではダメだ、優れた成果をあげよ
┣信頼を構築し部下を思いやる
┣行動指針を判断の基準にする
┣目標を持って始める
┗盲目的に従うことなく疑問を持つ姿勢を奨励する

■OODA
Observe(観察)、Orient(状況判断、方向づけ)、Decide(意思決定)、Act(行動)
OODAは過去の経験に捉われることなく現状にあった行動をとるためのもの
Observeでは先入観を持つことなく公平かつ客観的に行うことを推奨
 変化を観察しスピーディな分析をし判断して進めるので生存率が高い
 場当たり的、個人の判断が多い、中長期計画に適していない、仮説が弱い、ミッションバリュービジョン共有の欠如で統率問題
PDCA
目標設定から始まるので、目標が明確になり、ブレずに取り組みやすい
安定した環境での品質管理や一定期間かける取組などに適している
 品質管理や生産管理用フレームワークの状況や前提が変わらない中で最適解を見つけるのに適している
簡易としてはPDR、Prep=準備、Do=実行、Review=復習検証

====
ティーチング:正解や解決に必要なノウハウを教える
コンサルティング:相手の問題を解決するための提案をし共に解決していく
カウンセリング:悩みや不安を解決するためにサポートする
コーチング:目標達成のために行動変容を促す傾聴と質問(アドバイスしない)

人生の幸福度は「貯金の量」で決まる
幸福感が最大になる貯金額とは1億円

Posted by funa : 11:16 PM | Column | Comment (0) | Trackback (0)


October 31, 2023

GCP Network Connectivity
●共有 VPC
 同組織のプロジェクトのホストプロジェクト(親)のVPCをサービスプロジェクト(子)に共有
●VPC ネットワーク ピアリング
 異なる組織間の接続(双方のVPCでコネクションを作成する、内部IPで通信する、サブネットは重複しないこと、2ホップ制限で1:1=3つ以上の場合は古メッシュでコネクション作成要)、k8sサービスとPod ipをVPCピアリング経由する利用法もある

●ハイブリッド サブネット
 Cloud VPN/Interconnect等が必要、オンプレルータとCloud RouterをBGPでつなぐ、オンプレとGCPをつなぐ
●Cloud Interconnect
 DCと専用線で閉域網接続、Cloud VPNより低レイテンシ/帯域安定
●Cloud VPN
 オンプレとIPsec VPN接続、アドレス帯の重複だめ、Cloud VPN側でBGPIP設定やIKEキー生成をしオンプレルータ側でそれらを設定する

●内部範囲
 VPCで使うIPをCIDRで定義しIP範囲の使用方法を事前に決定しておく、IPが勝手に使われたりしない等ができる

●限定公開の Google アクセス(Private Google Access)
 外部IPを持たないGCE等はデフォルトのインターネットゲートウェイ0.0.0.0を経由してGoogle APIにアクセスする、VPC>Routesで見れる
●オンプレミス ホスト用の限定公開の Google アクセス
 CloudVPNやInterconnectを経由してオンプレから内部IPを利用してGoogleAPIにアクセス、GCP側ではCloudDNSで特定のドメインのAレコードを入れる、選択したドメインのIPアドレス範囲を静的カスタムルートでVPC内のプライベートIPからルーティングできるように設定する、オンプレにはCloudRouterからドメインのIPアドレス範囲をBGPでルーティング広報する、VPNやInterconnectがないと0.0.0.0でGoogleAPIにアクセスするがこれだとRFC1918に準拠しない199.33.153.4/30などのIPを使う必要がありルーティングが複雑化したり、オンプレを通る場合があり通信は慎重に設計をすること
●Private Service Connect
 「限定公開の Google アクセス」の発展版、オンプレをNATでVPCに接続、内部IPでGoogleAPIにアクセスできる、PSCエンドポイントを介して内部IPで公開できる、NATされ内部IPの公開先での重複OK

●プライベート サービス アクセス
 VPCペアリングを併用してサービスプロデューサをVPCに接続し内部IPで次のようなサービスに内部IPでアクセスできるようにする(Cloud VPNまたはInterconnectを付け足せばオンプレからも可)、Cloud SQL/AlloyDB for posgre/Memorystore for Redis/Memcached/Cloud build/Apigee等の限られたもの
●サーバーレス VPC アクセス
 サーバレスからVPC内リソースにアクセスするためのコネクタ(通常は外部IP通信になるがコレだと内部IPでVPCにルーティングされる、/28のサブネットを指定)、例えば既存のcloud runサービスを編集しても付けられず初期構築時のみ設定できる

●外部 IP アドレスを持つ VM から API にアクセスする
IPv6をVMに設定し限定公開DNSゾーン設定をすればトラフィックはGCP内にとどまりインターネットを通りません

●CDN Interconnect
 Cloud CDNもあるが他社のCDNに接続する、Akamai/Cloud flare/fastly等々

●Network Connectivity Center 
 ハブとなりCloudVPN/InterconnectをメッシュしGCP/オンプレ含め通信させる、Googleのバックボーンでユーザ企業の拠点間を接続できる
●ダイレクト ピアリング
 GoogleのエッジNWに直接ピアリング接続を確立し高スループット化、Google workspaceやGoogleAPI用だが普通は使わずInterconnectを使う
●キャリア ピアリング
 ダイレクトピアリングの高度な運用が自社対応できない等でサービスプロバイダ経由でGoogle workspaceなどのGoogleアプリに品質よくアクセスする

Google CloudのVPCを徹底解説!(応用編) - G-gen Tech Blog

●トンネル系の下記は色々権限が要りそうで候補
Compute OS login/IAP-secured tunnel user/Service account user/viewer/compute.instance*

■ポートフォワードは止めないと別につないで繋いでいるつもりでも同じところに繋ぎ続ける
lsof -i 3128
ps ax | grep 3128
ps ax | ssh
kill [PID]

■IAPトンネル
export http_proxy=http://localhost:3128
export https_proxy=http://localhost:3128
gcloud compute start-iap-tunnel --zone asia-northeast1-a gce-proxy001 3128 --local-host-port=localhost:3128 --project=gcp-proxy-prj
でコマンドを打てばIAP踏み台トンネルを通って外部に通信できる

■踏み台コマンド
gcloud compute ssh --projet gcp-prj-unco --zone asia-northeast1-a gce-step-svr
でSSHログインしそこからcurl等で操作する

■シークレットからPWを取りつつコマンドを打つ
gcloud compute ssh --project gcp-prj --zone asia-northeast1-b stp-srv --tunnel-through-iap fNL 3306:mysql.com: 3306
mysql -u baka_usr -p"$(gcloud secrets versions access latest --secret mysql_pw --project=gcp-prj)" -h 127.0.0.1-P 3306
 mysqlコマンドのpオプションは空白なしでPWを入れる、baka_usrはMySQLのユーザ、mysql_pwはsecret mgrに保存した名前
 $()のLinuxコマンドでgcloudコマンドを入れ子。ワンライナーの形で利用ができる
secret mgrのコマンド 
ワンライナー解説(変数と$()とバッククォート

■SSHトンネル
sshの基本はこれ、セキュアシェル、トンネルは特殊?
SSH [オプション] [ログイン名@]接続先 [接続先で実行するcmd]
接続先に権限があること

SSHの疎通確認
ssh baka@stp_srv.unco.com

設定例
.ssh/config
User baka
Hostname step_srv
ProxyCommand ssh -W %h:%p baka@step_srv.unco.com
PubkeyAuthentication no
PasswordAuthentication yes

※sshはPWは危険なので鍵認証のみにしたい
 IPアドレス元を制限や同一IPのログイン試行は拒否する仕組み等は欲しい

SSHコネクション上でトンネル作る
ssh step_srv -L 8080:dest.benki.com:80
 とか ssh -L 8080:dest.benki.com:80 ahouser@step_srv.unco.com
※ポート22でstep_srvにSSHコネクションを貼り、ローカル:8080のリクエストはdest:80に転送する
ブラウザか新規ターミナルでcurl
http://localhost:8080
ダメなら転送設定したターミナルはstep_srvにいるのでcurl

GCP、AWS、Azure 別に見るクラウド VM への攻撃経路まとめ (paloaltonetworks.jp)

=============
なぜレッドオーシャン化する前にサービスを グロースできなかったのか? - フリマアプリ編 - (フリル)
サービスを急拡大させる意思決定が遅く競合に遅れ
競合出現後も経営方針を大きく変えなかった
勝利条件はユーザ数で機能差ではなかった
パワープレーでいかにプロモーションばら撒いて認知広げて第一想起をとるかだった
先行者優位で過ごせる期間は短い
スタープレイヤーの採用、手数料無料化、TVCM等PLを超えた手法があった、BS経営すべきだった
成長のキャップが創業者の能力になっていた
有能な人材:耳の痛いことを言ってくれる人材を経営チームに採用しても良かった
CTOが開発をし、組織運営の雑務をし、採用もやっていた
CEOは机の組み立てをするな。CTOはPCの購入をするな
役割の変化に素早く適用し権限移譲を行い、やるべきことをやれる状況を作る
あるいは必要な組織を大きくすることに注力する、例えば開発組織を大きくする
戦時のCEO、皆に戦時であることを伝える、企業文化に背く意思決定も行う
研究や教育等、やった方が良さそうな耳障りの良いタスクも拒否する
どうやったら市場で勝てるかの戦略

IPOとか目指さなければConfort zoneを見つけてじっくりまったりビジネスを継続させる手もある
メルカリやPay2をみた結果論、このやり方も古いというかアレ

Posted by funa : 10:57 PM | Web | Comment (0) | Trackback (0)


June 21, 2023

Machine learning(Bigquery ML)
機械学習:
 マシーンラーニング、ML。マッシーンがLearnしデータの背景にあるルールやパターンを発見する。
モデル:
 機械学習における入力データに対して結果(出力)を導き出す仕組み。モデルは入力されたデータを解析し、評価/判定を行った結果を出力として返す。つまり、機械学習は「入カ>モデル>出力」から成る。

学習データ
 モデルをつくるために学習させるデータ
適用データ
 モデルに対して予測を適用させるデータ
教師あり
 学習データに対して正解ラベルを付けて学習する方法
  例)過去にDMを送付した結果(目的変数)を用いて学習させる
教師ありは、回帰と分類の2つに分けられます。
 回帰(予测)
  連続する数値を予測するもので、売上、重量、温度などを算出する
 分類(識別)
  データがどのクラスに属するかを予測するもので、販売商品が売れる見込み/売れない見込みなどに分類
  DMにおいては分類モデル(買う・買わないの識別)を使用

目的変数
 結果側の変数
 例)ある特定のカテゴリやブランドをその顧客が注文する
  ●確率(購入する・しない)
   ー学習データにターゲットフラグ (購入あり=1、購入無し=0)を立てる
   ー適用後に出てくる結果は0~1 (0%~100%) の範囲
  ●金額
説明変数(特微量とも呼ぶ) 
 原因側のデータ
 目的変数を予測するために使用する顧客の様々な情報、大きく分けて2種類
  ●顧客属性
   ー法人/個人事業主など事業形態、登録住所の郵便番号、業種コードなど
  ●購買履歴
   ー購買 いつ、何を、どのくらい購入したか等の情報
   ー各商品カテゴリ毎の購入金額 etc.
質的変数
 数値で推し測ることができ、数字の大小に意味をもつデータ
  (例)売上、購入回数、従業員数、DM送付回数
單的変数
 単に分類や種類を区別するためだけのデータ
  (例)都道府県、茎種コード、購入有無

統計手法
 重回帰分析:
  説明変数xが目的変数yの値を変化させます。そのため、説明変数から、目的変数の値を予測可能です。
 ロジスティック回帰
  yが1になる確率を判別します。いくつかの要因(説明変数)から「2値の結果(目的変数)」が起こる確率を説明・予測
   2値の結果とは合格/不合格、採用/不採用など、答えが2つしかない場合を指し

線形回帰(エクセル)
 slope関数:回帰直線の傾きを取得
 inercept関数:回帰直線の切片を取得
 forecast関数:単回帰分析からの推測値を取得
+++++++++++++

BigQueryを利用して機械学習を簡易に学びたいです。Webアプリのログよりサーバーエラーを予測するようなもので方法を教えてください > BigQueryを利用して機械学習を学び、Webアプリのログからサーバーエラーを予測する方法について簡単に解説します。以下はその手順の概要です。

●ステップ1: データの準備
まず、WebアプリのログデータをBigQueryにインポートします。ログデータには、タイムスタンプ、リクエストの詳細、ステータスコード、エラー メッセージなどの情報が含まれているはずです。

例:ログデータスキーマ server_log
timestamp: TIMESTAMP
request_id: STRING
status_code: INTEGER
error_message: STRING
user_agent: STRING
response_time: FLOAT

●ステップ2:データの前処理
エラーログの解析を容易にするために、データをクリーンアップし、特徴量を作成します。

CREATE OR REPLACE TABLE ds.cleaned_log AS
SELECT
timestamp,
status_code,
error_message,
user_agent,
response_time,
IF(status_code >= 500, 1, 0) AS is_error
FROM
ds.server_log
WHERE
timestamp BETWEEN 2023-01-01 AND 2023-12-31;

このクエリでは、ステータスコードが500以上のものをエラーと見なし、is_error列を追加しています。

●ステップ3:特徴量エンジニアリング
機械学習モデルに投入するための特徴量を作成します。例えば、以下のような特徴量を考えます。
-時間帯 (hour)
-ユーザーエージェント (user_agent) 
-過去のエラーレート(past_error_rate)
※past_error_rateを省くとどうなのか?

CREATE OR REPLACE TABLE ds.features AS
SELECT
EXTRACT(HOUR FROM timestamp) AS hour,
user_agent,
response_time,
is_error,
--AVG(is_error) OVER (PARTITION BY user_agent ORDER BY timestamp RANGE BETWEEN INTERVAL 1 DAY PRECEDING AND CURRENT ROW) AS past_error_rate
AVG(is_error) OVER (PARTITION BY user_agent) AS past_error_rate
FROM
ds.cleaned_log;

●ステップ4: 機械学習モデルの作成
BigQuery MLを使用してモデルを作成します。ここではロジスティック回帰モデルを使用してエラーの予測を行います。
他には、The CREATE MODEL statement  |  BigQuery  |  Google Cloud
MODEL_TYPE = { 'LINEAR_REG' |'LOGISTIC_REG' |'KMEANS' |'MATRIX_FACTORIZATION' |'PCA' |'AUTOENCODER' |'AUTOML_CLASSIFIER' |'AUTOML_REGRESSOR' |'BOOSTED_TREE_CLASSIFIER' |'BOOSTED_TREE_REGRESSOR' |'RANDOM_FOREST_CLASSIFIER' |'RANDOM_FOREST_REGRESSOR' |'DNN_CLASSIFIER' |'DNN_REGRESSOR' |'DNN_LINEAR_COMBINED_CLASSIFIER' | 'DNN_LINEAR_COMBINED_REGRESSOR' |'ARIMA_PLUS' |'ARIMA_PLUS_XREG' |'TENSORFLOW' |'TENSORFLOW_LITE' |'ONNX' |'XGBOOST'}

CREATE OR REPLACE MODEL ds.error_prediction_model
OPTIONS(model_type='logistic_reg', input_label_cols=['is error'] AS
SELECT
hour, 
user_agent, 
response_time, 
past_error_rate,
is_error
FROM
ds.features;

●ステップ5: モデルの評価
モデルを評価し、精度を確認します。

SELECT
*
FROM
 ML.EVALUATE(MODEL, `ds.error.prediction_model`,(
SELECT hour,
user_agent,
response_time,
past_error_rate,
is_error
FROM
ds.features
));

●ステップ6: エラーの予測
新しいデータを使ってエラーを予測します。

SELECT
*
predicted_is_error,
predicted_is_error_probs
FROM
ML.PREDICT(MODEL `ds.error_prediction_model`,(
SELECT
EXTRACT(HOUR FROM timestamp) AS hour,
user_agent,
response_time,
--AVG(CASE WHEN status_code 500 THEN 1 ELSE 0 END) OVER (PARTITION BY user_agent ORDER BY timestamp RANGE BETWEEN INTERVAL 1 DAY PRECEDING AND CURRENT ROW) AS past_error_rate
AVG(CASE WHEN status_code >= 500 THEN 1 ELSE 0 END) OVER (PARTITION BY user_agent) AS past_error_rate
FROM
ds.new_server_log
));


●ダミーデータ
INSERT INTO ds.server_log (timestamp, request_id, status_code, error_message, user_agent, response_time)
VALUES
('2024-06-28 18:00:00 UTC', 'req 801, 208, '', 'Mozilla/5.0 (Windows NT 18.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 0.123), 
(2024-06-20 10:01:00 UTC', 'req 002, 588, Internal Server Error', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 8.456),
(2024-06-28 10:02:00 UTC', 'req 003', 484, 'Not Found', 'Mozilla/5.0 (iPhone; CPU iPhone OS 14,6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.1, 8.234),
(2024-06-20 10:03:00 UTC', 'req 004', 200, '', 'Mozilla/5.0 (Windows NT 18.8; Win64; x64; rv:89.0) Gecko/20100181 Firefox/89.8, 0.345),
(2024-06-28 10:04:00 UTC, 'req 005', 502, Bad Gateway', 'Mozilla/5.0 (Linux; Android 11; SM-G9918) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.8.4472.124 Mobile Safari/537.36, 0.678),
(2024-86-28 10:05:00 UTC, 'req 006', 503, 'Service Unavailable', 'Mozilla/5.0 (iPad; CPU OS 14.6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/6084.1, 0.789), (2824-86-28 18:06:00 UTC, req 007, 200, Chrome/91.0.4472.124 Safari/537.36, 0.567), Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
(2024-06-2010:07:00 UTC, 'req 008, 500, Internal Server Error', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.8.4472.124 Safari/537.361, 0.890),
(2024-06-20 18:08:00 UTC, req 009, 404, Not Found', 'Mozilla/5.0 (iPhone; CPU iPhone OS 14 6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.11', 8.345),
('2024-06-28 18:09:00 UTC', 'req 010', 200, '', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0 Gecko/20100101 Firefox/89.0', 0.456);


INSERT INTO ds.new_server_log (timestamp, request_id, status_code, error_message, user_agent, response_time)
VALUES
(2024-06-21 09:00:00 UTC', 'req 101', 200, '', 'Mozilla/5.0 (Windows NT 18.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36', 0.112), 
(2024-06-21 09:01:08 UTC, req 102', 500, Internal Server Error', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.8.4472.124 Safari/537.36, 0.478),
(2024-06-21 09:02:00 UTC', 'req 183, 484, 'Not Found', 'Mozilla/5.0 (iPhone; CPU iPhone OS 14_6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safar1/684.1, 0.239),
(2024-06-21 09:03:00 UTC', 'req 104, 200, Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0, 8.301),
(2024-06-21 09:04:08 UTC, req 185', 502, 'Bad Gateway', 'Mozilla/5.0 (Linux; Android 11; SM-G9918) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.8.4472.124 Mobile Safari/537.36', 8.683),
(2024-06-21 09:05:00 UTC, req 106', 503, Service Unavailable', 'Mozilla/5.0 (iPad; CPU OS 14,6 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.1, 0.756),
(2024-06-21 09:06:00 UTC, req 107, 208, ", Mozilla/5.0 (Windows NT 18.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.8.4472.124 Safari/537.36, 0.523),
(2024-06-21 09:07:00 UTC, req 188, 500, Internal Server Error, Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.8.4472.124 Safari/537.36, 0.812),
('2024-06-21 09:08:08 UTC', 'req 109,, 404, 'Not Found', 'Mozilla/5.0 (iPhone: CPU iPhone OS 14,6 1ike Mac OS X) AppleWebKit/685.1.15 (KHTML, like Gecko) Version/14.1.1 Mobile/15E148 Safari/604.1', 0.267),
('2024-06-21 09:09:08 UTC', 'req 110', 200, '', 'Mozilla/5.0 (Windows NT 18.8; Win64: x64; rv:89.0) Gecko/20180101 Firefox/89.8', 8.412);

Posted by funa : 08:00 PM | Web | Comment (0) | Trackback (0)


June 1, 2023

GCP Python Google doc編集
Google Docのコピーや編集
https://developers.google.com/docs/api/how-tos/documents?hl=ja
https://rimever.hatenablog.com/entry/2019/10/16/060000
クイックスタート
https://developers.google.com/docs/api/quickstart/python?hl=ja
スコープ情報 https://developers.google.com/identity/protocols/oauth2/scopes?hl=ja#docs
ディスカバリ ドキュメント
例えばこれはDriveAPIの分だが、RESTAPIで何ができるか全記載しているっぽい
https://www.googleapis.com/discovery/v1/apis/drive/v3/rest
Drive API
https://developers.google.com/drive/api/guides/about-sdk?hl=ja
https://developers.google.com/drive/api/reference/rest/v3?hl=ja
Docs API
https://developers.google.com/docs/api/concepts/document?hl=ja
https://developers.google.com/docs/api/reference/rest?hl=ja
https://googleapis.github.io/google-api-python-client/docs/epy/index.html
https://googleapis.github.io/google-api-python-client/docs/dyn/docs_v1.html
https://developers.google.com/docs/api/reference/rest/v1/documents/get?hl=ja

文字置換 https://developers.google.com/docs/api/how-tos/merge?hl=ja

※DocAPIからdriveld folderidは取得できなさそう、getは使えそう
※DriveAPIが使えない?
コピーでなくDocAPIでget body からの新規createで行く?
共有ドライブ時は、supports All Drives=True が必要だったでOK
file_metadata = service.files().get(fileld=DOCUMENT_ID, fields=id, name, mimeType, driveld', supports AllDrives=True) execute()

サービスアカウントでGWSにアクセスするにはGWS OU設定等が必要な場合がある>Google一般共有Docで検証も可

あるGoogle Docをコピーし、
本文を編集した上で
 本文の編集は((sample))となっている文字列をAAAに置換する
特定のドライブのフォルダに移動

from google.oauth2.service_account import Credentials
from googleapiclient.discovery
import build import re
#1. サービスアカウントの認証情報を設定
SCOPES = ['https://www.googleapis.com/auth/documents',
'https://www.googleapis.com/auth/drive']
SERVICE_ACCOUNT_FILE = 'path/to/your/service-account-file.json' #サービスアカウント のJSONファイルのパス

creds = Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)

#2. Google Docs と Driveのサービスをビルド
docs_service = build('docs', 'v1', credentials=creds)
drive_service = build('drive', 'v3', credentials=creds)

#3. コピー元のGoogle DocのIDと、移動先のフォルダIDを設定
SOURCE_DOCUMENT_ID = 'source_doc_id' #コピー元のドキュメントID
TARGET_FOLDER_ID = 'target_folder_id' #移動先のフォルダID

#4. Google Docをコピー
copied_doc = drive_service.files().copy(fileld=SOURCE_DOCUMENT_ID, body={"name": "Copied Document"), supportsAllDrives=True).execute()
copied_doc_id = copied_doc['id']

#5、本文を取得し、{{sample}} をAAAに置換
def replace_text(document_id, old_text, new_text)
#ドキュメントの内容を取得
document = docs_service.documents().get(documentid=document_id).execute()
content = document.get('body').get('content')
#リクエストリスト
requests = []
#検索と置換を行う
for element in content:
if 'paragraph' in element:
for paragraph_element in element['paragraph']['elements']:
if 'textRun' in paragraph_element:
text = paragraph_element['textRun']['content']
if old_text in text:
start_index = paragraph_element('startindex']
end_index = paragraph_element['endIndex']
requests append({
'replaceAllText': {
'containsText': {
'text': re.escape(old_text), #エスケープなしにする必要有
'matchCase': True
},
'replaceText': new_text
}
})
#置換リクエストを実行
if requests:
docs_service.documents().batchUpdate(documentid=document_id, body={'requests':requests}).execute()

#置換処理の実行
replace_text(copied_doc_id, '((sample))', 'AAA')

#6、コピーしたドキュメントを指定のフォルダに移動
drive_service.files().update(fileld=copied_doc_id, addParents=TARGET_FOLDER_ID, removeParents=copied doc['parents'][0], supportsAllDrives=True).execute() #親が取れないのでフォルダはハードコード

print(f"Document copied, edited, and moved successfully! Document ID: {copied_doc_id)")


Posted by funa : 12:00 AM | Web | Comment (0) | Trackback (0)


May 29, 2023

GCP hands-off 2
■プロジェクト削除時のサービスアカウント
プロジェクトは30日保留される。その間サービスアカウント権限は生きており他プロジェクトでは動作する。
しかし保留期間はプロジェクトを使用できずサービスアカウントを削除できず、個別に一つ一つ権限をはく奪するしかない。
サービスアカウントはプロジェクト削除前に、必要であれば事前に削除や無効化しておくことも検討する。

■連携
GoogleWorkspace -> GAS -> GCP Oauth + API -> GCP(Bigquery etc.)
Python -> Gcloud sdk -> gcloud auth -> GCP(Bigquery etc.) <-> federation query/Connected sheet
Python(Oauth key) -> GCP認証情報(Oauth Key) + API -> GoogleWorkspace
 GCPのクレデンシャルページでOauth2.0 client IDと鍵が発行でき、鍵でイケる
  Pythonコードで鍵を指定すると実行時にログインを求められ、client IDとユーザIDを紐づけして実行することになる
  Authentication — gspread 5.7.2 documentation
  Python でシンプルに OAuth 2 する (urllib + oauthlib) - Qiita
 GCPのクレデンシャルページでAPIキーも発行でき、これは可能性はある
Python -> local csv/tsvが基本
●Python(SA key) -> GCP認証情報(SA Key) + API -> GoogleWorkspace
 サービスアカウントでGWSにアクセスできないのでダメ
  信頼しているドメインとのみ外部共有を許可する - Google Workspace 管理者 ヘルプ
  サービス アカウント(ドメイン名の末尾が「gserviceaccount.com」)を信頼しているドメインにすることはできません
   OUで許可するとイケるはずだが、、
●Python でGoogle docをイジる
下記のURLの内容を検証すればよい
Google Cloudコンソールで
Oauth同意画面を設定
Google Docs APIを有効化
OAuth クライアントIDを作成
シークレットJson ファイルができるのでDL(リネーム)
コードにクレデンシャルJSONファイルとDocのURLに含まれるdocumentIDを記述
→Python実行するとDocのデータが取れる(ローカルの場合は楽)

/// runのデプロイ時に設定を入れる方法について
1)環境変数を(コンソール/cmd/コンテナymiのどれかで)設定:
env=os environ.get("ENV") で使う。ログに出やすく非推奨
2)シークレットマネージャ保存分を設定
環境変数+コードでやるのと同じ?
3)ボリュームを使う:
クレデンを入れ、トークンの一時保存ができる?
Cloud RunでSecret Managerを使いたい #Python - Qiita
※サービスアカウントでGWSを扱うにはGWSのOUで受け入れる設定が必要な場合がある

■secret managerに保存してコードで呼び出して使う 
Secret Managerのシークレットアクセサー権限 
 (checksumをかけている)

from google.cloud import secretmanager
import google.cloud.logging
import logging
def get_url(secret_key, project_num)
logging.warning('####### secret_key' + str(secret_key) + '######')
client = secretmanager.SecretManagerServiceClient()
resource_name = "projects/()/secrets/()/versions/latest.format(project_num, secret_key)
res = client.access_secret_version(resource_name)
slack_url = res.payload.data.decode("utf-8")
return slack_url

■API等でデータを取った時中身が分からない場合
pramsが何かわからん時
print(params)
print(type(params))
#<class 'proto.marshal.collections.maps.MapComposite'>
#よくわからんクラスでもdirで保持するAttributeが分かる
attributes = dir(params)
print(attributes)
#そこに含まれるメソッドも確認できるのでhelpする
help(params.get)
 #prams.get('query')すると含まれるSQLが分かりこれで進める等

■Protocol buffers
APIの返りはGoogleは自社で開発したProtocol buffersを使っていようだ
たとえば下記が返る
name: "projects/98765"
parent: "folders/12345"
project_id: "aaaaaa-bbbb-market"
state: "ACTIVE"
display_name: "aaaaaa-bbbb-market"
create_time{
seconds: 1601250933
nanos: 820000000
}
update_time{
seconds: 1632826231
nanos: 634000000
}
etag: "W/a06910d9093db111"
labels{
key: "budget_group"
value: "cccc"
}

これは
print (type(response))すると下記であり
<class "google.cloud. resourcemanager v3.types.projects.Project"> 
print (response.project_id) で簡単にデコードし値取得できることが分かる

APIからの値を取るときのコード
from google.cloud import resourcemanager_v3
client = resourcemanager_v3.ProjectsClient()
request resourcemanager v3.ListProjectsRequest{
#組織の場合、現状は権限がGOP側で用意がなく無理だった
#parent organizations/12345678.
parent="folders/1122233344"
}
page_result = client.list_projects(request=request)
for response in page result:
print(type(response))
print (response.project_id)

エンコードする場合 https://blog.imind.jp/entry/2019/12/28/124728
pip install googleapis-common-protos でインスコ?
sudo apt install protobuf-compiler でインスコ
sudo apt-get install protobuf-compiler でインスコ
 ※google提供のフォルダごと使用しようとして失敗した方法 
 ※にprotoファイルがあるが丸々必要なので下記でDL
 ※git clone https://github.com/googleapis/googleapis.git
 ※バスを合わせてprojects.protoを使うが失敗
 ※たとえば protoc python_out=. --proto_path=googleapis ./googleapis/google/cloud/resourcemanager/v3/projects.proto
projects.proto を下記の内容で一から作成することが必要だった
syntax proto3;

message Resource{
string name = 1;
string parent = 2; 
string project_id = 3;
string state = 4;
string display_name = 5; 
map<string, string> create_time = 6;
map<string, string> update_time = 7;
string etag = 8;
map<string, string> labels = 9;
}
そして下記を実行しコンパイル
protoc --python_out=. ./projects.proto
projects_pb2.pyが生成されるため、パッケージとして読みこみprotocol buffersを実行できるようになる
import projects_pb2.py
※なおエラーで pip install U protobuf=3.20.0でダウングレードした

注意点としては、pythonとprotocol bufferとBigqueryの型合わせが必要
 DateやTimestampはUNIXエポックからの日数や秒数に変換する必要がある
 Noneをstr 'None'や、int -1や、bool FalseにPythonで調整をする
//UNIXエポックからの日数
current_date = datetime.now()
epoch = datetime(1970, 1, 1)
record_date = (current_date - epoch).days

//UNIXエポックからの秒数
data_string = str(date_v)
dt_obj = datetime.fromisoformat(date_string.replace("Z","+00:00"))
epoch = datetime(1970, 1, 1, tzinfo=timezone.utc)
seconds_since_epoch = (dt_obj - epoch).tatal_seconds()
microseconds_since_epoch = int(seconds_since_epoch * 1e6)
date_v = microseconds_since_epoch

■BQ APIクォータ割り当て超過(1000件insertしようとした)
テーブル変更1日1500件まで
テーブルメタデータ変更は10sあたり5回まで
テーブル当たりDMLの実行待ちキューは20件まで
テーブル当たり10sあたり25のDMLまで
→各insertでスリープを5秒入れた
 import time
 time.sleep(5)

上限がテーブル単位のためテーブル名を分けると回避できるらしい
■BQ streaming insert->BQ storage read/write APIの上限はDMLと別で、閾値が大きい
streaming insert -> Bigquery storage write API を使う
BigQuery Storage Write API を使用してデータを一括読み込み、ストリーミングする  |  Google Cloud
Storage Write API を使用したデータ読み込みのバッチ処理  |  BigQuery  |  Google Cloud

CreateWriteStream > AppendRows(ループ) > FinalizeWriteStream > BatchCommitWriteStreams
 をstart/append/send/close(write commit)の関数化し返り値でつなげた形にしたが
 sendをした後 proto_rows = types.ProtoRows() を掛け初期化する必要があった(offsetが倍々で増えたから)
offsetで送信毎の開始行の設定も必要(一連の処理で件数を記憶しており0固定で処理を書けないようだった)

■Python/Client libraryの値をBQに入れるにあたり
仕様書で型を調べる。STRUCTやクラスは紐解いて通常のカラムでBQに挿入
timestampやboolやint64はそのままの形でBQに挿入
BQ SQL:日付は値なしならNULLを入れる、数値やBool値はクォートで囲まない
PythonでSQLインサート文を作るとき改行コードが含まれるものをセットするとSyntax errror:Unclosed string literal
q = q.replace('//', '////') バックスラッシュをエスケープ、あるとイリーガルエスケープシーケンスとなる、raw文字列にしたい?
q = q.replace('/n', '//n') 改行をエスケープ
q = q.replace("'", "\\'") SQLが途切れないようシングルクォートをエスケープ
q = q.replace('/n', '    ') 改行を空白で置き換える

■変更の判断
変更で問題がでないか→PCにマウスと付けて問題が起こらないかという問題と相似、最終的に経験で判断するしか

■監査ログからSetIamのメソッドを取りBQ権限付与を検知するクエリ
WITH source AS(
SELECT
*
FROM `project-logging.organization_audit_log_v2.cloudaudit_googleapis_com_activity_20*`
WHERE_TABLE_SUFFIX = format_date('%y%m%d', current_date("Asia/Tokyo"))
),
project source AS(
SELECT
ROW_NUMBER() OVER (ORDER BY timestamp) as id,
*
FROM source
WHERE
protopayload_auditlog.methodName = 'SetlamPolicy'
project_authorizationinfo AS(
SELECT
DISTINCT
id,
__ori.resource.type as type,
__ori.resource.labels.project_id as project_id,
__ori.resource.labels.dataset_id as dataset_id,
protopayload_auditlog.methodName as method_name
protopayload_auditlog.resourceName as resource_name,
protopayload_auditlog.authenticationInfo.principal Email as email_manipulator,
authorizationInfo.resource as request_resource,
authorizationInfo.permission as request_permission,
authorizationInfo.granted as request_granted,
protopayload_auditlog.requestMetadata.callerlp as callerlp,
protopayload_auditlog.requestMetadata.callerSuppliedUserAgent as callerSuppliedUserAgent,
FROM project_source AS __ori
). UNNEST (protopayload_auditlog.authorizationInfo) AS authorizationInfo
project_bindingdeltas AS(
SELECT
id,
--array_binding Deltas_project as binding Deltas_project,
array_binding Deltas_project.action as action_project,
array_binding Deltas_project.member as member_project,
array_binding Deltas_project.role as role_project,
timestamp
FROM project_source AS_ori
,UNNEST (protopayload_auditlog.servicedata_v1_iam.policyDelta.bindingDeltas) AS array_binding Deltas_project
),
project_setiam AS(
SELECT
--*, except(id)
type,
project_id,
dataset_id,
method_name,
resource_name,
email_manipulator,
request_resource,
request_permission,
request_granted,
callerip,
callerSuppliedUserAgent.
action_project,
member_project,
role project.
CAST(NULL AS STRING) AS metadataJson,
CAST(NULL AS STRING) AS bindingDeltas_dataset,
CASTINULLAS STRING AS action_dataset,
CAST(NULL AS STRING) AS member_dataset,
CAST(NULL AS STRING) AS role_dataset,
CAST(NULL AS STRING) AS bindingDeltas_table,
CAST(NULL AS STRING) AS action_table,
CAST(NULL AS STRING) AS member_table,
CAST(NULL AS STRING) AS role_table,
timestamp
FROM project_authorizationinfo
LEFT JOIN project_bindingdeltas ON project_authorizationinfo.id = project_bindingdeltas.id
WHERE role_project LIKE 'roles/bigquery%
),
resource_source AS (
SELECT
__ori.resource.type as type,
__ori.resource.labels.project_id as project id,
__ori.resource.labels.dataset_id as dataset_id,
protopayload_auditlog.methodName as method_name,
protopayload_auditlog.resourceName as resource_name,
protopayload_auditlog.authenticationInfo.principalEmail as email_manipulator,
authorizationInfo.resource as request_resource,
authorizationInfo.permission as request_permission,
authorizationInfo.granted as request_granted,
protopayload_auditlog.requestMetadata.callerlp as callerlp,
protopayload_auditlog.requestMetadata.callerSuppliedUserAgent as callerSuppliedUserAgent,
protopayload_auditiog.metadataJson,
timestamp
FROM source AS __ori
,UNNEST(protopayload_auditlog.authorizationInfo) AS authorizationInfo 
WHERE
protopayload_auditlog.methodName = 'google.iam.v1.IAMPolicy.SetlamPolicy' 
--AND timestamp= "2024-03-11 04:11:30.885258 UTC"
),
resource_id AS (
SELECT
ROW_NUMBER() OVER (ORDER BY timestamp) as id,
*
FROM resource_source
),
resource_bq_dataset AS (
SELECT
id as id_dataset,
json_extract(metadataJson, '$.datasetChange bindingDeltas') as bindingDeltas_dataset,
json_extract(array_bindingDeltas_dataset, '$action') as action_dataset,
json_extract(array_bindingDeltas_dataset, $.member') as member_dataset,
json_extract(array_bindingDeltas_dataset, '$.role') as role_dataset,
FROM resource_id
,UNNEST(json query_array(metadataJson, '$.datasetChange.bindingDeltas')) AS array_bindingDeltas_dataset
),
resource_bq_table AS (
SELECT
id as id table,
json_extract(metadataJson, '$.tableChange.bindingDeltas') as bindingDeltas_table,
json extract(array_bindingDeltas_table, '$.action') as action table,
json_extract(array_bindingDeltas_table. '$.member') as member table,
json_extract(array_bindingDeltas_table, '$.role') as role_table,
FROM resource_id
,UNNEST(json query_array(metadataJson, '$.tableChange.bindingDeltas')) AS array_bindingDeltas_table
),
resource_setiam AS ( 
SELECT
--*except(id, id_dataset, id_table)
type,
project_id,
dataset_id,
method_name,
resource_name,
email_manipulator,
request_resource,
request_permission,
request_granted,
callerlp,
callerSuppliedUserAgent,
CAST(NULL AS STRING) AS action_project,
CAST(NULL AS STRING) AS member_project,
CAST(NULL AS STRING) AS role_project,
metadataJson,
bindingDeltas_dataset,
action_dataset,
member_dataset,
role_dataset,
bindingDeltas_table,
action_table,
member_table,
role_table,
timestamp
FROM resource_id
LEFT JOIN resource_bq_dataset ON resource_id.id = resource_bq_dataset.id_dataset
LEFT JOIN resource_bq_table ON resource_id.id = resource_bq_table.id_table
)
SELECT * FROM project_setiam
UNION ALL
SELECT * FROM resource_setiam

■BQからCloudSQLにデータを入れる (GCSを経由する、コマンドやPythonがある
bq query --use_legacy_sql=false 'CREATE OR REPLACE TABLE `prj.ds._table` AS SELECT FROM `prj.ds.view`';
bq extract -destination_format CSV 'prj.ds._table' gs://bucket/tbl.csv
gcloud sql import csv インスタンス名 
gs://bucket/tbl.csv --database=データベース名 --table=テーブル名

■ログの重複をなくす
import google.cloud.logging
import logging

# クライアントの作成
client = google.cloud.logging.Client()

# Cloud Logging ハンドラを追加
client.get_default_handler()
client.setup_logging()

# 既存のハンドラをすべて削除
for handler in logging.root.handlers[:]:
    logging.root.removeHandler(handler)

# 新しいハンドラを追加
logging.basicConfig(level=logging.INFO)
# logging.basicConfig(level=logging.DEBUG)  # DEBUG レベルからすべてのレベルを記録

# propagate を無効にして重複を防ぐ
logger = logging.getLogger()
logger.propagate = False

# 各ログレベルでテスト
logging.debug('This is a DEBUG log')
logging.info('This is an INFO log')
logging.warning('This is a WARNING log')
logging.error('This is an ERROR log')
logging.critical('This is a CRITICAL log')

■何度かAPIコールを繰り返す
def safe_replace_text(document_id, old_text, new_text, max_attempts=3):
    for attempt in range(max_attempts):
        try:
            replace_text(document_id, old_text, new_text)
            break  # 成功した場合はループを抜ける
        except Exception as e:
            print(f"Attempt {attempt + 1} failed: {e}")
            if attempt == max_attempts - 1:
                print("Reached maximum attempts.")

■Exponential Backoffで時間を指数級数的にゆらぎながら増やすリトライ
import time
import random
def exponential_backoff(max_retries=5, base_wait_time=1, max_wait_time=32):
    retries = 0
    while retries < max_retries:
        try:
            # APIリクエストの送信
            response = send_request()
            if response.status_code == 200:
                return response  # 成功時に結果を返す
        except Exception as e:
            wait_time = min(base_wait_time * (2 ** retries), max_wait_time)
            wait_time += random.uniform(0, 1)  # ランダムなズレを追加(Jitter)
            print(f"Retrying in {wait_time} seconds...")
            time.sleep(wait_time)
            retries += 1
    raise Exception("Max retries reached, request failed")

クォータの増加の依頼もできるが、基本的に下記の上限がある

1. Google Docs API の利用上限

  • ユーザーごとの1分あたりのリクエスト数:
    • 1,000 リクエスト/ユーザー/100秒
  • プロジェクトごとの1日あたりのリクエスト数:
    • プロジェクトごとに1日100万リクエスト(デフォルト)

これらの制限を超えると、リクエストが拒否されるか、APIを利用できなくなることがあります。

2. Google Drive API の利用上限

  • ユーザーごとの100秒あたりのリクエスト数:
    • 1,000 リクエスト/ユーザー/100秒
  • プロジェクトごとの1日あたりのリクエスト数:
    • 1日10億リクエスト(デフォルト)
  • ユーザーごとのデータ転送量の制限:
    • 読み込みは750GB/日/ユーザー
    • 書き込みはユーザーごとの制限が異なるため、大量のデータ処理を行う場合は注意が必要

Posted by funa : 07:30 PM | Web | Comment (0) | Trackback (0)


April 23, 2023

Bay Bay Bay
ebayはSellerからオファーがあり値引きしてくる。破壊力あるな。ただ購入が面倒だった。

ebayでの問題
1)日本には送ってくれない場合がある
2)日本に送ってくれるが住所が日本語だと売主でキャンセルされる
決済での問題
3)クレカ会社で支払いを止められている場合がある
4)Paypalで各種証明書が必要で止められている場合がある(クレカ認証も要るはず
5)google payでの決済ができない(クレカ側で止められているのでは?

対処
1)米国転送住所 shipito.com が使える
 オレゴン倉庫は消費税が掛からないが有料で月10ドル
 calの10%弱の消費税が掛からず送料も安くなるので一時契約する
 ebayに米国住所を登録するには米国電話番号が必要
  skypeで毎月300円で発行ができるので一時契約する(MSのoutlookメールID)
 shipito.comに送付されたら日本に転送依頼をする
2)ebayの送付先住所(米国)は英語にする(日本に送付可ならコレなくてもいい)
 念のため日本の個人情報住所も英語にする(日本に送付可でもココは英語がいいかも)
 念のためebayの言語設定を英語、場所を米国にする(上か下ナビにあるはず)
  その後に購入・決済手続きする方がいい
3)クレカサイトのFAQで支払いできない時等で検索して対処
4)Paypalは各種証明書を登録する。クレカ認証は確か少額課金で検証されるはず
5)知らん

shipitoで送料見積もると安かったが、実際に荷物が届くと梱包が大きくかなり高い
米国内転送でshipitoでまとめて荷物一つで送ろうと思ったが、直接日本に送ってくれる相手なら直接の方が安いかもしれず良く考えよ
解約すること shipito $10 / skype us phone num 300yen

解約していたはずが、SKYPE.COM/GO/BILL利用国LUで300円請求されていた ログインIDを確認しログインし Manage features| Skype My Account で解約した
SkypeとかGoogleとか詐欺ってるよな

=========

流せるトイレブラシの使い方に「天才かよ」 真似したくなるトイレの掃除術 – grape [グレイプ] (grapee.jp)

昭和100年は、2025年/平成37年/令和7年だ。(昭和64年=平成元年/1989、平成31年=令和元年/2019)
西暦の下2桁から018(レイワ)を引くと令和、23-18=5なので令和5年

Posted by funa : 09:12 PM | Column | Comment (0) | Trackback (0)


Navi: <  1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19  >
PhotoGallery


TWITTER
Search

Mobile
QR for cellphone  QR for smart phone
For mobile click here
For smart phone click here
Popular Page
#1Web
#2Hiace 200
#3Gadget
#4The beginning of CSSレイアウト
#5Column
#6Web font test
#7Ora Ora Ora Ora Ora
#8Wifi cam
#9みたらし団子
#10Arcade Controller
#11G Suite
#12PC SPEC 2012.8
#13Javascript
#14REMIX DTM DAW - Acid
#15RSS Radio
#16Optimost
#17通話SIM
#18Attachment
#19Summer time blues
#20Enigma
#21Git
#22Warning!! Page Expired.
#23Speaker
#24Darwinian Theory Of Evolution
#25AV首相
#26htaccess mod_rewite
#27/// BANGBOO BLOG /// From 2016-01-01 To 2016-01-31
#28竹書房
#29F☆ck CSS
#30Automobile Inspection
#31No ID
#32Win7 / Win10 Insco
#33Speaker
#34Arcade Controller
#35Agile
#36G Suite
#37Personal Information Privacy Act
#38Europe
#39Warning!! Page Expired.
#40GoogleMap Moblile
#41CSS Selectors
#42MySQL DB Database
#43Ant
#44☆od damnit
#45Teeth Teeth
#46Itinerary with a eurail pass
#47PHP Developer
#48Affiliate
#49/// BANGBOO BLOG /// From 2019-01-01 To 2019-01-31
#50/// BANGBOO BLOG /// From 2019-09-01 To 2019-09-30
#51/// BANGBOO BLOG /// On 2020-03-01
#52/// BANGBOO BLOG /// On 2020-04-01
#53Windows env tips
#54恐慌からの脱出方法
#55MARUTAI
#56A Rainbow Between Clouds‏
#57ER
#58PDF in cellphone with microSD
#59DJ
#60ICOCA
#61Departures
#62Update your home page
#63CSS Grid
#64恐慌からの脱出方法
#65ハチロクカフェ
#66/// BANGBOO BLOG /// On 2016-03-31
#67/// BANGBOO BLOG /// From 2017-02-01 To 2017-02-28
#68/// BANGBOO BLOG /// From 2019-07-01 To 2019-07-31
#69/// BANGBOO BLOG /// From 2019-10-01 To 2019-10-31
#70/// BANGBOO BLOG /// On 2020-01-21
#71Bike
#72Where Hiphop lives!!
#73The team that always wins
#74Tora Tora Tora
#75Blog Ping
#76無料ストレージ
#77jQuery - write less, do more.
#78Adobe Premire6.0 (Guru R.I.P.)
#79PC SPEC 2007.7
#80Google Sitemap
#81Information privacy & antispam law
#82Wifi security camera with solar panel & small battery
#83Hope get back to normal
#84Vice versa
#85ハイエースのメンテ
#86Camoufla
#87α7Ⅱ
#88Jack up Hiace
#89Fucking tire
#90Big D
#914 Pole Plug
#925-year-old shit
#93Emancipation Proclamation
#94Windows env tips
#95Meritocracy
#96Focus zone
#97Raspberry Pi
#98Mind Control
#99Interview
#100Branding Excellent
Category
Recent Entry
Trackback
Comment
Archive
<     January 2025     >
Sun Mon Tue Wed Thi Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Link